Ir al contenido principal

Osciloscopio



Un osciloscopio es un instrumento de medición electrónico para la representación gráfica de señales eléctricas que pueden variar en el tiempo. Es muy usado en electrónica de señal, frecuentemente junto a un analizador de espectro.

Presenta los valores de las señales eléctricas en forma de coordenadas en una pantalla, en la que normalmente el eje X (horizontal) representa tiempos y el eje Y (vertical) representa tensiones. La imagen así obtenida se denomina oscilograma. Suelen incluir otra entrada, llamada "eje Z" que controla la luminosidad del haz, permitiendo resaltar o apagar algunos segmentos de la traza.

Los osciloscopios, clasificados según su funcionamiento interno, pueden ser tanto analógicos como digitales, siendo en teoría el resultado mostrado idéntico en cualquiera de los dos casos.

Utilización

En un osciloscopio existen, básicamente, dos reguladores que ajustan la señal de entrada y permiten, consecuentemente, medirla en la pantalla y de esta manera se pueden ver la forma de la señal medida.

El primero regula el eje X (horizontal) y aprecia fracciones de tiempo (segundos, milisegundos, microsegundos, etc., según la resolución del aparato). El segundo regula el eje Y (vertical) controlando la tensión de entrada (en Voltios, milivoltios, microvoltios, etc., dependiendo de la resolución del aparato).

Estas regulaciones determinan el valor de la escala cuadricular que divide la pantalla, permitiendo saber cuánto representa cada cuadrado de esta para, en consecuencia, conocer el valor de la señal a medir, tanto en tensión como en frecuencia.

Osciloscopio analógico

La tensión a medir se aplica a las placas de desviación vertical de un tubo de rayos catódicos (utilizando un amplificador con alta impedancia de entrada y ganancia ajustable) mientras que a las placas de desviación horizontal se aplica una tensión en diente de sierra (denominada así porque, de forma repetida, crece suavemente y luego cae de forma brusca). Esta tensión es producida mediante un circuito oscilador apropiado y su frecuencia puede ajustarse dentro de un amplio rango de valores, lo que permite adaptarse a la frecuencia de la señal a medir. Esto es lo que se denomina base de tiempos.

El funcionamiento es el siguiente:

En el tubo de rayos catódicos el rayo de electrones generado por el cátodo y acelerado por el ánodo llega a la pantalla, recubierta interiormente de una capa fluorescente que se ilumina por el impacto de los electrones.

Si se aplica una diferencia de potencial a cualquiera de las dos parejas de placas de desviación, tiene lugar una desviación del haz de electrones debido al campo eléctrico creado por la tensión aplicada. De este modo, la tensión en diente de sierra, que se aplica a las placas de desviación horizontal, hace que el haz se mueva de izquierda a derecha y durante este tiempo, en ausencia de señal en las placas de desviación vertical, dibuje una línea recta horizontal en la pantalla y luego vuelva al punto de partida para iniciar un nuevo barrido. Este retorno no es percibido por el ojo humano debido a la velocidad a que se realiza y a que, de forma adicional, durante el mismo se produce un apagado (borrado) parcial o una desviación del rayo.

Si en estas condiciones se aplica a las placas de desviación vertical la señal a medir (a través del amplificador de ganancia ajustable) el haz, además de moverse de izquierda a derecha, se moverá hacia arriba o hacia abajo, dependiendo de la polaridad de la señal, y con mayor o menor amplitud dependiendo de la tensión aplicada.

Al estar los ejes de coordenadas divididos mediante marcas, es posible establecer una relación entre estas divisiones y el período del diente de sierra en lo que se refiere al eje X y al voltaje en lo referido al Y. Con ello a cada división horizontal corresponderá un tiempo concreto, del mismo modo que a cada división vertical corresponderá una tensión concreta. De esta forma en caso de señales periódicas se puede determinar tanto su período como su amplitud.

El margen de escalas típico, que varía de microvoltios a unos pocos voltios y de microsegundos a varios segundos, hace que este instrumento sea muy versátil para el estudio de una gran variedad de señales.

Limitaciones del osciloscopio analógico

El osciloscopio analógico tiene una serie de limitaciones propias de su funcionamiento:

  • Las señales deben ser periódicas. Para ver una traza estable, la señal debe ser periódica ya que es la periodicidad de dicha señal la que refresca la traza en la pantalla.
  • Las señales muy rápidas reducen el brillo. Cuando se observa parte del período de la señal, el brillo se reduce debido a que la tasa de refresco disminuye.
  • Las señales lentas no forman una traza. Las señales de frecuencias bajas producen un barrido muy lento que no permite a la retina integrar la traza. Esto se solventa con tubos de alta persistencia. También existían cámaras Polaroid especialmente adaptadas para fotografiar las pantallas de osciloscopios. Manteniendo la exposición durante un periodo se obtiene una foto de la traza.
  • Sólo se pueden ver transitorios si éstos son repetitivos.

Osciloscopio digital

En la actualidad los osciloscopios analógicos están siendo desplazados en gran medida por los osciloscopios digitales, entre otras razones por la facilidad de poder transferir las medidas a un ordenador personal.

En el osciloscopio digital la señal es previamente digitalizada por un conversor analógico digital. Al depender la fiabilidad de la visualización de la calidad de este componente, esta debe ser cuidada al máximo.

Las características y procedimientos señalados para los osciloscopios analógicos son aplicables a los digitales. Sin embargo, en estos se tienen posibilidades adicionales, tales como el disparo anticipado (pre-triggering) para la visualización de eventos de corta duración, o la memorización del oscilograma transfiriendo los datos a un PC. Esto permite comparar medidas realizadas en el mismo punto de un circuito o elemento. Existen asimismo equipos que combinan etapas analógicas y digitales.

Estos osciloscopios añaden prestaciones y facilidades al usuario imposibles de obtener con circuitería analógica, como los siguientes:

  • Medida automática de valores de pico, máximos y mínimos de señal. Verdadero valor eficaz.
  • Medida de flancos de la señal y otros intervalos.
  • Captura de transitorios.
  • Cálculos avanzados, como la FFT para calcular el espectro de la señal.

Comentarios

Entradas populares de este blog

Alicate

Los alicates son herramientas imprescindibles para el trabajo de montajes electrónicos. No pueden faltar en ninguna caja de herramientas que se precie, ya que es un útil básico para el bricolaje. Esta especie de tenaza metálica provista de dos brazos suele ser utilizada para múltiples funciones como sujetar elementos pequeños o cortar y modelar conductores. Para qué sirven El área de la electricidad se ve especialmente beneficiada gracias a su versatilidad . Se emplean para labores que van desde retener cables y modelarlos hasta sostener y alcanzar elementos situados en lugares poco accesibles. Por ejemplo, unos alicates aislados de tamaño reducido, permiten coger fácilmente componentes para soldar o para desoldar. Con mango aislante Por norma general, los alicates están provistos con fundas para mangos, como ocurre con todas las herramientas utilizadas en la electricidad y la electrónica. Con una funda recubierta , los más habituales. Fundas de plástico refo

Escantillon

Los escantillones son, simple y sencillamente un "patrón" o "guía" a seguir en la construcción o fabricación de un objeto. No todos los escantillones son iguales, cada uno depende del objeto que se va a construir. Pero pueden variar desde una pequeña varilla en la construcción de una puerta o escritorio, hasta un complejo diagrama como en la fabricación del calzado. ¿Cual es su función? Una de las funciones de los escantillones, es que dos o más productos similares, tengan las mismas medidas, y así poder decir que son realmente similares. También los escantillones eliminan el hacer todo un proceso de nuevo de un producto cuando queramos más de uno de su misma clase. Por ejemplo, si no existiesen los escantillones, un carpintero, después de hacer una puerta, si quisiera volver a hacer otra igual, necesitaría tener que volver a hacer todo el proceso, todas las medidas y todo el trabajo. En cambio, teniendo los escantillones ya tiene "un diagrama&

Cadena de Ancla

Hierro forjado con eslabones reforzados transversalmente con una unión denominada contrete . La cadenas se constituyen con una sucesión de eslabones comunes unidos cada 25 metros ( 15 brazas) con un eslabón espacial desarmable de vinculación. Cada tramo de aprox 25 mts se denomina grillete y esa es la unidad náutica de medida de la cadena. Cuando se dice que se han fondeado 4 grilletes se refiere a que hay unos 100 mts aproximadamente de cadena en el agua. Cada grillete de unión se pinta de un color llamativo y a continuación con pintura clara se marcan un eslabón a cada lado, para el primer tramo a partir del ancla, dos para el segundo tramo, tres para el tercero y asi sucesivamente, de manera tal de facilitar la cuenta de cadena fondeada durante la maniobra. La longitud de cadena de un mercante promedio es de 10 grilletes (250 metros) cada una (babor y estribor). A título ilustrativo un eslabón común o malla tiene: Longitud 6 veces y ancho 3,